ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Sebastian Schunert, Yousry Azmy
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 1-29
Technical Paper | doi.org/10.13182/NSE14-77
Articles are hosted by Taylor and Francis Online.
A comparison of the accuracy and computational efficiency of spatial discretization methods of the three-dimensional SN equations is conducted, including discontinuous Galerkin finite element methods, the arbitrarily high-order transport method of nodal type (AHOTN), the linear-linear method, the linear-nodal (LN) method, and the higher-order diamond difference method. For this purpose, we have developed a suite of method of manufactured solutions benchmarks that provides an exact solution of the SN equations even in the presence of scattering. Most importantly, our benchmark suite permits the user to set an arbitrary level of smoothness of the exact solution across the singular characteristics. Our study focuses on the computational efficiency of the considered spatial discretization methods.
Numerical results indicate that the best-performing method depends on the norm used to measure the discretization error. We employ discrete Lp norms and integral error norms in this work. For configurations with continuous exact angular flux, high-order AHOTNs perform best under Lp error norms, while the LN method performs best when measured by integral error norms. When the angular flux is discontinuous, a new singular-characteristic tracking method for three-dimensional geometries performs best among the considered methods.