ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sebastian Schunert, Yousry Azmy
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 1-29
Technical Paper | doi.org/10.13182/NSE14-77
Articles are hosted by Taylor and Francis Online.
A comparison of the accuracy and computational efficiency of spatial discretization methods of the three-dimensional SN equations is conducted, including discontinuous Galerkin finite element methods, the arbitrarily high-order transport method of nodal type (AHOTN), the linear-linear method, the linear-nodal (LN) method, and the higher-order diamond difference method. For this purpose, we have developed a suite of method of manufactured solutions benchmarks that provides an exact solution of the SN equations even in the presence of scattering. Most importantly, our benchmark suite permits the user to set an arbitrary level of smoothness of the exact solution across the singular characteristics. Our study focuses on the computational efficiency of the considered spatial discretization methods.
Numerical results indicate that the best-performing method depends on the norm used to measure the discretization error. We employ discrete Lp norms and integral error norms in this work. For configurations with continuous exact angular flux, high-order AHOTNs perform best under Lp error norms, while the LN method performs best when measured by integral error norms. When the angular flux is discontinuous, a new singular-characteristic tracking method for three-dimensional geometries performs best among the considered methods.