ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Y.-R. Kang, M. W. Lee, G. N. Kim, T.-I. Ro, Y. Danon, D. Williams, G. Leinweber, R. C. Block, D. P. Barry, M. J. Rapp
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 86-116
Technical Paper | doi.org/10.13182/NSE14-80
Articles are hosted by Taylor and Francis Online.
Neutron capture measurements were performed with the time-of-flight method at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute (RPI) using isotopically enriched gadolinium (Gd) samples (155Gd, 156Gd, 157Gd, 158Gd, and 160Gd). The neutron capture measurements were made at the 25-m flight station with a 16-segment sodium iodide multiplicity detector. After the data were collected and reduced to capture yields, resonance parameters were obtained by a combined fitting of the neutron capture data for five enriched Gd isotopes and one natural Gd sample using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. We observed 2, 169, 96, and 1 new resonances in 154Gd, 155Gd, 157Gd, and 158Gd isotopes, respectively. Resonances in the ENDF/B-VII.0 evaluation that were not observed in the current experiment and could not be traced to a literature reference were removed. This includes 11 resonances from the 156Gd isotope, 1 resonance from 157Gd, 1 resonance from 158Gd, and 6 resonances from the 160Gd isotope. The resulting resonance parameters were used to calculate the capture resonance integrals in the energy region from 0.5 eV to 20 MeV and were compared to calculations obtained when using the resonance parameters from ENDF/B-VII.0 and previous RPI results. The present parameters gave a resonance integral value of 395 ± 2 b, which is ∼0.8% higher and ∼1.7% lower than that obtained with the ENDF/B-VII.0 parameters and with the previous RPI parameters, respectively.