ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Taro Ueki
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 58-68
Technical Paper | doi.org/10.13182/NSE14-54
Articles are hosted by Taylor and Francis Online.
The overlapping batch means method (OBM) has been investigated for robust statistical error estimation of local power tallies in Monte Carlo (MC) reactor core calculation. Originally, a nonoverlapping version was introduced in MC criticality calculation by Gelbard and Prael. However, the issue of batch size optimization was thought of as a lack of robustness. In this work, OBM with asymptotic bias correction was implemented with the batch size of the square root of the number of generations and compared with the orthonormally weighted standardized time series method (OWSTS). Numerical tests were conducted for various positions of the core of a pressurized water reactor. Results obtained indicate that neither OBM nor OWSTS consistently outperforms the other in terms of an overall performance measure incorporating bias and stability. Therefore, OBM with asymptotic bias correction can be an option to statistical error estimation in production MC criticality codes since OWSTS lacks an automated process to determine the number of weighting functions and can output the estimate only at the final generation. It is also shown that OBM with asymptotic bias correction performs equally regardless of the batch size.