ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
J. I. Katz
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 117-122
Technical Note | doi.org/10.13182/NSE14-81
Articles are hosted by Taylor and Francis Online.
Deuterium-deuterium and deuterium-tritium reaction rates may be compared to determine plasma temperatures in the 10- to 200-eV range. Distinguishing neutrons from these two reactions is difficult when yields are low or unpredictable. Time-of-flight (TOF) methods fail if the source is extended in time. These neutrons may be distinguished because inelastic scattering of more energetic neutrons by carbon produces a 4.44-MeV gamma ray and because hydrogenous material preferentially attenuates lower-energy neutrons. We describe a detector system that can discriminate between lower- and higher-energy neutrons for fluences as low as O(102) neutrons per sterad even when TOF methods fail, define a figure of merit, and calculate its performance over a broad range of parameters.