ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
Argala Srivastava, S. B. Degweker
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 460-476
Technical Paper | doi.org/10.13182/NSE14-42
Articles are hosted by Taylor and Francis Online.
Analytical Green’s function–based diffusion Monte Carlo (MC) methods have been applied earlier for simulation of reactor noise experiments for measuring the degree of subcriticality in accelerator-driven systems. In this method analytical solution of the diffusion equation is used to construct the probability distribution function for neutron absorption in a medium. This method has several advantages such as speed, elegance, and exactitude but was applicable to a rather restricted class of problems, such as an infinite or bare homogeneous medium.
In the present paper, we further develop the analytical Green’s function (analytical diffusion kernel) approach to demonstrate its utility in a wider class of problems like a heterogeneous medium with the same or different diffusion coefficients. We provide mathematical and numerical proofs of the validity of certain recipes that were proposed for heterogeneous systems. We also investigate whether and to what extent the diffusion theory–based MC can be improved to give results closer to transport theory, particularly in situations wherein diffusion theory methods are otherwise inapplicable.