ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Yosuke Hirata, Takatoshi Asada, Hideo Komita, Tetsu Suzuki, Rie Aizawa
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 355-363
Technical Paper | doi.org/10.13182/NSE13-82
Articles are hosted by Taylor and Francis Online.
It has been reported that operating an annular flow channel electromagnetic pump (EMP) near the peak of the head pressure and flow rate curve sometimes suffers a drop of head pressure. This phenomenon was attributed to nonuniform distribution of inlet flow or magnetic field, but its mechanism has not been clarified. For fear of this undesired head pressure drop, current EMP design is sometimes too conservative in that the rated efficiency is set low compared with experimentally achieved values. Understanding this phenomenon clearly, therefore, will prospectively make possible more proper design. We modeled the annular channel with parallel divided channels to examine the response of the EMP for distributed inlet flow. For each of the divided channels, the equation of fluid motion is numerically solved including the pressure from the external flow loop. Since the time constant of the pressure from the external loop is slow compared with that of the divided channels, decreased flow in some divided channels can undergo reversed pressure and become unstable in certain cases. Transient behaviors, such as the total head pressure and the flow rate of the EMP, were examined, and conditions of this pressure drop occurrence were clarified, making possible more proper EMP design.