ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
T. Burr, H. Trellue, S. Tobin, A. Favalli, J. Dowell, V. Henzl, V. Mozin
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 321-332
Technical Paper | doi.org/10.13182/NSE14-38
Articles are hosted by Taylor and Francis Online.
An integrated nondestructive assay (NDA) system combining active (neutron generator) and passive neutron detection and passive gamma (PG) detection is being analyzed in order to estimate the amount of plutonium, verify initial enrichment, burnup, and cooling time, and detect partial defects in a spent fuel assembly (SFA). Active signals are measured using the differential die-away (DDA), delayed neutron (DN), and delayed gamma (DG) techniques. Passive signals are measured using total neutron (TN) counts and both gross and spectral resolved gamma counts. To quantify how a system of several NDA techniques is expected to perform, all of the relevant NDA techniques listed above were simulated as a function of various reactor conditions such as initial enrichment, burnup, cooling time, assembly shuffling pattern, reactor operating conditions (including temperature, pressure, and the presence of burnable poisons) by simulating the NDA response for five sets of light water reactor assemblies. This paper compares the performance of several exploratory model-fitting options (including neural networks, adaptive regression with splines, iterative bias reduction smoothing, projection pursuit regression, and regression with quadratic terms and interaction terms) to relate data simulated with measurement and model error effects from various subsets of the NDA techniques to the total Pu mass. Isotope masses for SFAs and expected detector responses (DRs) for several NDA techniques are simulated using MCNP, and the DRs become inputs to the fitting process. Such responses include eight signals from DDA, one from DN, one from TN, and up to seven from PG; the DG signal will be examined separately. Results are summarized using the root-mean-squared estimation error for plutonium mass in held-out subsets of the data for a range of model and measurement error variances. Different simulation assumptions lead to different spent fuel libraries relating DRs to Pu mass. Some results for training with one library and testing with another library are also given.