ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Glen A. Warren, Kevin K. Anderson, Jonathan Kulisek, Yaron Danon, Adam Weltz, A. Gavron, Jason Harris, Trevor N. Stewart
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 264-273
Technical Paper | doi.org/10.13182/NSE13-71
Articles are hosted by Taylor and Francis Online.
Improved nondestructive assay of isotopic masses in used nuclear fuel would be valuable for nuclear safeguards operations associated with the transport, storage, and reprocessing of used nuclear fuel. Our collaboration is examining the feasibility of using lead slowing-down spectrometry techniques to assay the isotopic fissile masses in used nuclear fuel assemblies. We present the application of our analysis algorithms to measurements conducted with a lead spectrometer. The measurements involved a single fresh fuel pin and discrete 239Pu and 235U samples. We are able to describe the isotopic fissile masses with root-mean-square errors over seven different configurations to 6.3% for 239Pu and 2.7% for 235U. Significant effort is yet needed to demonstrate the applicability of these algorithms for used-fuel assemblies, but the results reported here are encouraging in demonstrating that we are making progress toward that goal.