ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Qian Zhang, Hongchun Wu, Liangzhi Cao, Youqi Zheng
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 233-252
Technical Paper | doi.org/10.13182/NSE13-108
Articles are hosted by Taylor and Francis Online.
The deviation of the effective resonance cross section obtained by conventional equivalence theory for a heterogeneous system is analyzed. It is shown that several approximations commonly adopted in conventional equivalence theory account for the deviation at different levels, with the narrow resonance (NR) approximation being the main source of deviation. Based on the analysis, an improved method based on equivalence theory is proposed. It utilizes the resonance fine flux integral table to minimize the deviation caused by NR approximation. The validity of the method is confirmed by test calculations of effective resonance cross sections in different geometries and different energy group structures. The results of eigenvalue calculations on typical fuel pin cells show that the proposed improvement is effective in reducing the error of infinite multiplication factors of the pin cell. Since the resonance fine flux integral used in this method has already been obtained in calculating the resonance integral table and can be pre-tabulated in the process of generating the library, the implementation of the proposed method is simple and requires no additional calculations. It is useful for improving the accuracy of lattice physics codes based on the equivalence theory.