ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Quentin Newell, Charlotta Sanders
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 253-263
Technical Paper | doi.org/10.13182/NSE13-44
Articles are hosted by Taylor and Francis Online.
The Monte Carlo (MC) method is becoming popular for three-dimensional fuel depletion analyses to compute quantities of interest in used nuclear fuel including isotopic compositions. However, there are some questions concerning the effect of MC uncertainties on predicted results in MC depletion calculations. The MC method introduces stochastic uncertainty in the computed fluxes. These fluxes are used to collapse cross sections, estimate power distributions, and deplete the fuel within depletion calculations; therefore, the predicted number densities also contain random and propagated uncertainties due to the MC solution to the neutron transport equation. The linear uncertainty nuclide group approximation (LUNGA) method was developed to calculate the propagated stochastic uncertainty in the nuclear isotopics, using the time-varying flux subjected to the power normalization constraint. Verification of the LUNGA method demonstrated that the standard deviation in the number densities and infinite multiplication factor (kinf) predicted by this method agree well with the uncertainty obtained from the statistical analysis of 100 different simulations performed with coupled MC depletion calculations. Future research includes (a) expanding the LUNGA methodology to include more nuclides, (b) fully automating the methodology, and (c) investigating the use of an axial segmented fuel rod.