ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
D. Ostermann, C. Krumb, R. Krieg
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 211-231
Technical Paper | doi.org/10.13182/NSE14-3
Articles are hosted by Taylor and Francis Online.
During postulated severe accidents in nuclear power plants, steel sheets and shells may suffer high plastic strains up to several percent. In contrast, for design-basis accidents the strains are within lower limits of the order of 0.2% required by the given rules. In both cases the margins up to structural fracture are of vital interest. In sheets and shells these margins may be reduced by diffuse as well as localized necking. Therefore, this paper investigates the remaining structural deformability described by the uniform elongation strain, where diffuse necking starts, and the quasi-uniform elongation strain, where localized necking starts. The theoretical models developed recently for thin sheets under uniaxial loading are extended to account for biaxial loading. Major findings are confirmed by appropriate structural experiments. Based on these results and their scatter, strain limits are recommended for steel sheets and shells under accident loading, such that fracture can be excluded. The strains caused by the accidents discussed in this paper turn out to be below these limits.