ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Liyan Qiu, Anthony P. Snaglewski
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 199-210
Technical Paper | doi.org/10.13182/NSE13-93
Articles are hosted by Taylor and Francis Online.
Lithium adsorption on the surface of magnetite, lepidocrocite, and maghemite particles was studied at different pH values in LiOH and Li2CO3 solutions under redox conditions and temperatures relevant to the water chemistry of CANadian Deuterium Uranium (CANDU) reactors. Lithium adsorption on maghemite shows a different behavior than on lepidocrocite and magnetite. It is concluded that specific adsorption is the dominant adsorption mechanism on maghemite while lithium adsorption on lepidocrocite and magnetite is nonspecific. However, lithium intercalation into the spinel structure of magnetite and maghemite is also likely. The introduction of O2 reduces lithium adsorption on magnetite. The adsorption behavior of lithium on iron oxides is important to understand the lithium hideout and return in the heat transport system during shutdown and restart of CANDU reactors.