ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Liu Xiaobo, Fan Xiaoqiang, Peng Xianjue, Du Jinfeng, Gao Hui
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 119-129
Technical Paper | doi.org/10.13182/NSE13-30
Articles are hosted by Taylor and Francis Online.
A novel experimental method is introduced for effectively validating neutron initiation probability, through which the delayed neutron influence on the source strength can be neglected—this is the main reason for substantially explaining the burst waiting time experiments performed in the Godiva and Caliban burst reactors. The key idea of the new method is that the burst is initiated by simultaneously injecting a pulse of neutrons with appropriate strength just as the reactor achieves prompt supercritical and tallied by judging whether or not the burst is initiated by the pulsed neutrons based on the measured data. The principle of the method is described using initiation theory. The Chinese Fast Burst Reactor–II (CFBR-II) structure and two sets of configurations for preliminary experiments are then described. Last, those two sets of preliminary experiments are carried out on CFBR-II in the state of 0.042 $ prompt supercritical, and results, including the typical picture and other important measured data, are provided in order to illustrate how the initiation probability can be validated. The initiation probability of 0.43 was determined by preliminary performing of 65 bursts, which is an ∼35% relative difference between the theoretic calculations and the experimental results. Some discussion and suggestions for possible follow-on work are provided.