ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Yunzhao Li, E. E. Lewis, Micheal A. Smith, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 179 | Number 1 | January 2015 | Pages 42-58
Technical Paper | doi.org/10.13182/NSE13-103
Articles are hosted by Taylor and Francis Online.
Combinations of three approaches are examined as options to replace the algorithms presently employed in the variational nodal code VARIANT. They are preconditioned Generalized Minimal Residual (GMRES) algorithms, parallelism in energy, and Wielandt acceleration. Together with partitioned matrix and Gauss-Seidel (GS) preconditioners, two GMRES algorithms are formulated to replace the upscattering iteration and facilitate energy parallelism and Wielandt acceleration. The GMRES algorithms are tested on two-dimensional thermal and fast reactor diffusion problems. The two GMRES algorithms yield higher efficiencies in energy group parallelization and Wielandt acceleration than simple parallelization of the existing GS algorithm. With preconditioning the GMRES algorithms reduce the total computing time by a factor of 2 to 4 and in some cases by a factor of >10. A multilevel iteration optimization scheme is investigated that automatically adjusts the relative error tolerance of the inner iterations according to the estimated convergence rate of the corresponding outer iterations and updates the Wielandt shift magnitude as the calculations progress. Numerical results based on large two-dimensional thermal and fast reactor diffusion problems demonstrate that automated optimization of the multilevel iterative processes reduces iteration numbers by as much as an order of magnitude.