ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
C. van der Hoeven, E. Schneider, L. Leal
Nuclear Science and Engineering | Volume 179 | Number 1 | January 2015 | Pages 1-21
Technical Paper | doi.org/10.13182/NSE13-78
Articles are hosted by Taylor and Francis Online.
There is a need for improved molybdenum isotope covariance data for use in modeling a new uranium-molybdenum fuel form to be produced at the Y-12 National Security Complex (Y-12). Covariance data correlate the uncertainty in an isotopic cross section at a particular energy to uncertainties at other energies. While high-fidelity covariance data exist for key isotopes, the low-fidelity covariance data available for most isotopes, including the natural molybdenum isotopes considered in this work, are derived from integral measurements without meaningful correlation between energy regions. This paper provides a framework for using the Bayesian R-matrix code SAMMY to derive improved isotopic resonance region covariance data from elemental experimental cross-section data. These resonance-wise covariance data were combined with integral uncertainty data from the Atlas of Neutron Resonances, uncertainty data generated via a dispersion method, and high-energy uncertainty data previously generated with the Empire-KALMAN code to produce an improved set of covariance data for the natural molybdenum isotopes. The improved covariance data sets, along with the associated resonance parameters, were inserted into JENDL4.0 data files for the molybdenum isotopes for use in data processing and modeling codes. Additionally, a series of critical experiments featuring the new U(19.5%)-10Mo fuel form produced at Y-12 was designed. Along with existing molybdenum sensitive critical experiments, these were used to compare the performance of the new molybdenum covariance data against the existing low-fidelity evaluation. The new covariance data were found to result in reduced overall bias, reduced bias due to the molybdenum isotopes, and improved goodness of fit of computational to experimental results.