ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
John D. Bess, Thomas L. Maddock, Andrew T. Smolinski, Margaret A. Marshall
Nuclear Science and Engineering | Volume 178 | Number 4 | December 2014 | Pages 550-561
Technical Paper | doi.org/10.13182/NSE14-12
Articles are hosted by Taylor and Francis Online.
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the neutron radiography (NRAD) reactor with low-enriched uranium fuel. Experiments include criticality, control rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worths of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental keff come from uncertainties in the manganese content and impurities in the stainless steel fuel cladding as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 (Monte Carlo N-Particle version 5-1.60) and ENDF/B-VII.0 neutron nuclear data are ∼1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA (Training, Research, Isotopes, General Atomics) reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.