ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Luka Snoj, Ivan Kodeli, Igor Remec
Nuclear Science and Engineering | Volume 178 | Number 4 | December 2014 | Pages 496-508
Technical Paper | doi.org/10.13182/NSE14-30
Articles are hosted by Taylor and Francis Online.
A complete evaluation of the experimental uncertainties of the KRITZ-2 series of critical and relative fission rate experiments was performed within the International Reactor Physics Experiment Evaluation Project. The uncertainties in the benchmark model keff are mainly due to uranium enrichment, plutonium content [mixed oxide (MOX) fuel], pitch, and boron isotopic composition. The largest contribution to the uncertainty in the benchmark model keff is from the uncertainty in the bias due to the homogenization of the particulate MOX fuel. In addition, uncertainties due to nuclear data libraries are presented. The keff's calculated with various nuclear data libraries systematically underpredict the benchmark model keff by one to three times the standard experimental uncertainties. When taking into account uncertainties in nuclear data estimated using SCALE-6.0 and JENDL-4.0m covariances, the benchmark and calculated keff's agree within 1σ of the total—experimental plus calculational—uncertainties. In contrast to the criticality benchmark data, the calculated relative fission rates agree very well with the experimental ones, especially when eliminating systematic errors due to normalization.