ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Makoto Ishikawa, Tetsuo Ikegami, Toshio Sanda
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 335-349
Technical Paper | doi.org/10.13182/NSE14-9
Articles are hosted by Taylor and Francis Online.
Under the International Reactor Physics Experiment Evaluation Project (IRPhEP) framework, in the cooperative JUPITER program between the United States and Japan, benchmarks are established to study large fast breeder reactor (FBR) core physics utilizing nine Zero Power Plutonium Reactor (ZPPR) critical experimental cores. These benchmarks cover a wide variety of core concepts including homogeneous and heterogeneous configurations, clean and engineering mock-up cores of 600- to 1000-MW(electric)–class sizes, and various core parameters such as criticality, reaction rate, and reactivity. Recently, detailed experimental information from original documents from Argonne National Laboratory has been scrutinized very carefully to establish the benchmark model and to evaluate quantitatively the experimental uncertainty. The benchmarks supply users with heterogeneous cell models and three-dimensional (3-D) core configurations, which are simplified to a degree that preserves the important physical features of the ZPPR cores such as plate heterogeneity, different drawer types, and 3-D core arrangement. Further, the benchmark handbook includes as-built information of the ZPPR cores as a complete set of electronic form; therefore, a user can develop his or her own benchmark model if necessary. The analysis of the benchmark with the deterministic or Monte Carlo method demonstrates its usefulness both for improving analytical methods and for validating nuclear data.