ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Makoto Ishikawa, Tetsuo Ikegami, Toshio Sanda
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 335-349
Technical Paper | doi.org/10.13182/NSE14-9
Articles are hosted by Taylor and Francis Online.
Under the International Reactor Physics Experiment Evaluation Project (IRPhEP) framework, in the cooperative JUPITER program between the United States and Japan, benchmarks are established to study large fast breeder reactor (FBR) core physics utilizing nine Zero Power Plutonium Reactor (ZPPR) critical experimental cores. These benchmarks cover a wide variety of core concepts including homogeneous and heterogeneous configurations, clean and engineering mock-up cores of 600- to 1000-MW(electric)–class sizes, and various core parameters such as criticality, reaction rate, and reactivity. Recently, detailed experimental information from original documents from Argonne National Laboratory has been scrutinized very carefully to establish the benchmark model and to evaluate quantitatively the experimental uncertainty. The benchmarks supply users with heterogeneous cell models and three-dimensional (3-D) core configurations, which are simplified to a degree that preserves the important physical features of the ZPPR cores such as plate heterogeneity, different drawer types, and 3-D core arrangement. Further, the benchmark handbook includes as-built information of the ZPPR cores as a complete set of electronic form; therefore, a user can develop his or her own benchmark model if necessary. The analysis of the benchmark with the deterministic or Monte Carlo method demonstrates its usefulness both for improving analytical methods and for validating nuclear data.