ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Makoto Ishikawa, Tetsuo Ikegami, Toshio Sanda
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 335-349
Technical Paper | doi.org/10.13182/NSE14-9
Articles are hosted by Taylor and Francis Online.
Under the International Reactor Physics Experiment Evaluation Project (IRPhEP) framework, in the cooperative JUPITER program between the United States and Japan, benchmarks are established to study large fast breeder reactor (FBR) core physics utilizing nine Zero Power Plutonium Reactor (ZPPR) critical experimental cores. These benchmarks cover a wide variety of core concepts including homogeneous and heterogeneous configurations, clean and engineering mock-up cores of 600- to 1000-MW(electric)–class sizes, and various core parameters such as criticality, reaction rate, and reactivity. Recently, detailed experimental information from original documents from Argonne National Laboratory has been scrutinized very carefully to establish the benchmark model and to evaluate quantitatively the experimental uncertainty. The benchmarks supply users with heterogeneous cell models and three-dimensional (3-D) core configurations, which are simplified to a degree that preserves the important physical features of the ZPPR cores such as plate heterogeneity, different drawer types, and 3-D core arrangement. Further, the benchmark handbook includes as-built information of the ZPPR cores as a complete set of electronic form; therefore, a user can develop his or her own benchmark model if necessary. The analysis of the benchmark with the deterministic or Monte Carlo method demonstrates its usefulness both for improving analytical methods and for validating nuclear data.