ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Byoung Jae Kim, Jungwoo Kim, Kyung Doo Kim
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 225-239
Technical Paper | doi.org/10.13182/NSE13-57
Articles are hosted by Taylor and Francis Online.
When fluid particles such as bubbles and droplets are not in contact with the wall, one probably neglects the wall drag term in the one-dimensional momentum equation for the dispersed phase. This treatment however leads to an unphysical prediction of the motion of the dispersed phase. In the framework of the conventional two-fluid model, how to apply the wall drag to the dispersed phase is disputable. The interface force acting on a fluid particle results from the interaction between the fluid particle and the surrounding continuous fluid. To clarify the contributions to the forces acting on the dispersed phase, the volume-averaged momentum equations are formulated based on the equation of a single fluid particle motion. After that, one-dimensional momentum equations are newly obtained from the averaged equations. It is shown that the wall drag term in the dispersed phase is associated with the spatial gradient of the volume-averaged viscous stress of the continuous phase. The magnitude of the wall drag term for a phase is its volume fraction multiplied by the total two-phase pressure drop induced by the wall shear of the continuous phase.