ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Stefano Passerini, Mujid S. Kazimi, Eugene Shwageraus
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 186-201
Technical Paper | doi.org/10.13182/NSE13-20
Articles are hosted by Taylor and Francis Online.
Experience with modeling fuel cycle options reveals that the large amount of generated data makes it difficult to understand trade-offs among fuel cycle policies. This paper shows that numerical optimization can be used to better identify impacts of fuel cycle policies and condense the generated data against a few significant criteria. The once-through cycle is considered the baseline case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include, among others, recycling the fissile materials from spent light water reactor fuel in fast reactors (FRs) as well as deployment of innovative recycling reactor technologies, such as the 235U initiated FRs. Additionally, a first-of-a-kind optimization scheme for the nuclear fuel cycle analysis is described. Optimization metrics of interest to different stakeholders in the fuel cycle (economics, fuel resource utilization, high-level waste, transuranic materials/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then used to demonstrate feasibility of arrival at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify noninferior solutions according to Pareto’s dominance approach to optimization. The main trade-off for fuel cycle optimization was found to be between emphasizing economics versus most of the other identified metrics.