ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Stefano Passerini, Mujid S. Kazimi, Eugene Shwageraus
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 186-201
Technical Paper | doi.org/10.13182/NSE13-20
Articles are hosted by Taylor and Francis Online.
Experience with modeling fuel cycle options reveals that the large amount of generated data makes it difficult to understand trade-offs among fuel cycle policies. This paper shows that numerical optimization can be used to better identify impacts of fuel cycle policies and condense the generated data against a few significant criteria. The once-through cycle is considered the baseline case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include, among others, recycling the fissile materials from spent light water reactor fuel in fast reactors (FRs) as well as deployment of innovative recycling reactor technologies, such as the 235U initiated FRs. Additionally, a first-of-a-kind optimization scheme for the nuclear fuel cycle analysis is described. Optimization metrics of interest to different stakeholders in the fuel cycle (economics, fuel resource utilization, high-level waste, transuranic materials/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then used to demonstrate feasibility of arrival at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify noninferior solutions according to Pareto’s dominance approach to optimization. The main trade-off for fuel cycle optimization was found to be between emphasizing economics versus most of the other identified metrics.