ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Paul Sermer, Fred M. Hoppe, Dan Pun-Quach, Keith R. Weaver, Charles Olive, Ismail Cheng
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 119-155
Technical Paper | doi.org/10.13182/NSE13-75
Articles are hosted by Taylor and Francis Online.
The response of a complex physical system is often evaluated by a tolerance interval for a percentile of the distribution of a variable of interest that is estimated by best-estimate codes. This tolerance interval is used as a test statistic to make decisions about the behavior of the system in the context of the specific safety issue. The most common methods to determine such tolerance intervals are order statistics methods leading to the so-called “95/95” level of safety standard. The application of these methods is predicated on the assumption that the simulated responses are identical to those of an actual reactor under the postulated conditions. We present here a novel statistical framework [referred to as EVS (extreme value statistics) methodology], not relying on the above assumption, for deriving tolerance limits involving data selected from a population that is different from the population of interest. Such a situation arises when the unobservable population is being estimated by an imperfect code and imperfect input. This leads us to distinguishing between “true” system stochastic (aleatory) variables and those resulting from the safety codes (subject to epistemic uncertainty). Methods using Monte Carlo sampling or sensitivity analysis, order statistics, and EVS methods produce different solutions as a consequence of a difference in how the true values and data are distinguished. This difference ultimately leads to different test statistics that are used to solve a decision-making problem. Closed-form expressions for the EVS-based tolerance limits are derived for a large class of models representing complex systems. Problems, both analytical and using actual reactor operating data, are presented and solved. EVS results demonstrate substantial improvements in operational and safety margins when compared to results obtained from existing methods used in the nuclear industry.