ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Jonathan Gérardin, Pierre Ruyer, Pascal Boulet
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 103-118
Technical Paper | doi.org/10.13182/NSE13-61
Articles are hosted by Taylor and Francis Online.
The reflooding of the reactor core during a loss-of-coolant accident (LOCA) in a pressurized water reactor is a rather complex conjugate heat transfer situation. In the mist flow regime downward from the quench front, the rod wall can reach temperatures up to 1400 K, and radiative heat transfer can play a significant role. The present study concerns the accurate numerical computation of radiative heat transfer throughout a subchannel with LOCA representative flow conditions resolved at a computational fluid dynamics–scale spatial discretization thus allowing the large gradients of two-phase-flow properties to be determined. The accuracy of several methods to solve the radiative transfer equations has been compared both in canonical test cases and in low-pressure LOCA conditions. The role of radiative transfer is obvious in all variables including those related to the dynamics of the flow. Analysis of the gap between the present estimation and a standard correlation has been performed. It leads to the conclusion that radiative transfer can be taken into account accurately by correlation as soon as well-defined radiative properties are considered. The transfer is very sensitive to droplet size and concentration and can be as large as the convective heat transfer.