ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jonathan Gérardin, Pierre Ruyer, Pascal Boulet
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 103-118
Technical Paper | doi.org/10.13182/NSE13-61
Articles are hosted by Taylor and Francis Online.
The reflooding of the reactor core during a loss-of-coolant accident (LOCA) in a pressurized water reactor is a rather complex conjugate heat transfer situation. In the mist flow regime downward from the quench front, the rod wall can reach temperatures up to 1400 K, and radiative heat transfer can play a significant role. The present study concerns the accurate numerical computation of radiative heat transfer throughout a subchannel with LOCA representative flow conditions resolved at a computational fluid dynamics–scale spatial discretization thus allowing the large gradients of two-phase-flow properties to be determined. The accuracy of several methods to solve the radiative transfer equations has been compared both in canonical test cases and in low-pressure LOCA conditions. The role of radiative transfer is obvious in all variables including those related to the dynamics of the flow. Analysis of the gap between the present estimation and a standard correlation has been performed. It leads to the conclusion that radiative transfer can be taken into account accurately by correlation as soon as well-defined radiative properties are considered. The transfer is very sensitive to droplet size and concentration and can be as large as the convective heat transfer.