ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Shuichi Ishikura, Yang Xu, Kenichiro Satoh
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 76-85
Technical Paper | doi.org/10.13182/NSE13-50
Articles are hosted by Taylor and Francis Online.
The primary hot-leg piping system of the advanced sodium-cooled fast reactor under conceptual study in Japan (named Japan sodium-cooled fast reactor: JSFR) utilizes large-diameter and thin-walled pipes to ensure high coolant velocity, which inevitably leads to the occurrence of flow-induced vibration. Usually, the structural integrity of a piping system under flow-induced vibration is defined to be the maximum stress amplitude below the design fatigue limit. The present study tries to establish a reasonable methodology to estimate the high-cycle fatigue damage due to flow-induced vibration depending on its frequencies and the corresponding stress levels. An analytical procedure for probabilistic fatigue evaluation is developed and applied to the hot-leg piping system. The reasonability of the newly proposed methodology is confirmed from a test simulation.