ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Taro Ueki
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 16-28
Technical Paper | doi.org/10.13182/NSE13-36
Articles are hosted by Taylor and Francis Online.
Fluctuation modeling of the macroscopic cross section is studied in the framework of a continuously distributed stochastic medium. In particular, spatial correlation is approached by fractional Brownian motion (FBM) and randomized Weierstrass function (RWF). Here, FBM is capable of modeling correlation due to coordinate increments while RWF has the same property as FBM on a small scale, is able to confine the influence of correlation within a certain range of increments, and is globally under a fixed variance. In numerical experiments, first flights of neutral particles are examined using Woodcock tracking. Results obtained indicate that the attenuation of an uncollided beam becomes slower than the exponential law of the corresponding nonstochastic homogeneous medium as the spatial correlation changes from negative to positive; this departure to the slower side is very small or negligible in the full antipersistency limit of negative correlation. It is also shown that the departure from the exponential law of attenuation is nearly negligible if the influence of correlation is confined within the mean free path (mfp) determined by the macroscopic cross section of the corresponding nonstochastic homogeneous medium. However, the mfp's for individual realizations of the medium distribute widely. FBM turns out not to be feasible for modeling positive correlation. Overall, RWF virtually eliminates the risk of negative values of the macroscopic cross section inherent in the FBM modeling.