ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Taro Ueki
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 16-28
Technical Paper | doi.org/10.13182/NSE13-36
Articles are hosted by Taylor and Francis Online.
Fluctuation modeling of the macroscopic cross section is studied in the framework of a continuously distributed stochastic medium. In particular, spatial correlation is approached by fractional Brownian motion (FBM) and randomized Weierstrass function (RWF). Here, FBM is capable of modeling correlation due to coordinate increments while RWF has the same property as FBM on a small scale, is able to confine the influence of correlation within a certain range of increments, and is globally under a fixed variance. In numerical experiments, first flights of neutral particles are examined using Woodcock tracking. Results obtained indicate that the attenuation of an uncollided beam becomes slower than the exponential law of the corresponding nonstochastic homogeneous medium as the spatial correlation changes from negative to positive; this departure to the slower side is very small or negligible in the full antipersistency limit of negative correlation. It is also shown that the departure from the exponential law of attenuation is nearly negligible if the influence of correlation is confined within the mean free path (mfp) determined by the macroscopic cross section of the corresponding nonstochastic homogeneous medium. However, the mfp's for individual realizations of the medium distribute widely. FBM turns out not to be feasible for modeling positive correlation. Overall, RWF virtually eliminates the risk of negative values of the macroscopic cross section inherent in the FBM modeling.