ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 361-366
Technical Note | doi.org/10.13182/NSE13-66
Articles are hosted by Taylor and Francis Online.
Particle fluxes on surfaces are difficult to calculate with Monte Carlo methods because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. The traditional method for dealing with this problem was recently extended by recognizing the assumptions that were implicit in its derivation. More recently, a kernel density estimator (KDE) has been proposed to replace the traditional method. In this technical note, example problems from the KDE development are analyzed, and the failure of the traditional method is shown to be due to the invalidity of one of the implicit assumptions, as previously predicted, and the extended theory is used to correct the traditional method.