ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 361-366
Technical Note | doi.org/10.13182/NSE13-66
Articles are hosted by Taylor and Francis Online.
Particle fluxes on surfaces are difficult to calculate with Monte Carlo methods because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. The traditional method for dealing with this problem was recently extended by recognizing the assumptions that were implicit in its derivation. More recently, a kernel density estimator (KDE) has been proposed to replace the traditional method. In this technical note, example problems from the KDE development are analyzed, and the failure of the traditional method is shown to be due to the invalidity of one of the implicit assumptions, as previously predicted, and the extended theory is used to correct the traditional method.