ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Zhengzheng Hu, Ralph C. Smith, Jeffrey Willert, C. T. Kelley
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 350-360
Technical Paper | doi.org/10.13182/NSE13-52
Articles are hosted by Taylor and Francis Online.
The Boltzmann transport equation is used to model the neutron flux in a nuclear reactor. The solution of the transport equation is the neutron flux, which depends on a large number of material cross sections that can be on the order of thousands. These cross sections describe various types of possible interactions between neutrons, such as fission, capture, and scattering. The cross sections are measured experimentally and therefore have associated uncertainties. It is thus necessary to quantify how the uncertainty of the cross-section values is propagated through the model for the neutron flux. High-dimensional model representations (HDMRs) can be employed to systematically quantify input-output relations. It can, however, be computationally prohibitive to construct a surrogate model using the HDMR framework for a model that has thousands of parameters. In this paper, we introduce an algorithm that utilizes the New Morris Method to first reduce the parameter space to include only the significant individual and pairwise effects and then construct a surrogate model using a Cut-HDMR expansion within the reduced space. A unified index is introduced to facilitate the comparison of the significance of the model parameters. The accuracy and efficiency of the surrogate model is demonstrated using a one-dimensional neutron transport equation.