ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. Rochman, W. Zwermann, S. C. van der Marck, A. J. Koning, H. Sjöstrand, P. Helgesson, B. Krzykacz-Hausmann
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 337-349
Technical Paper | doi.org/10.13182/NSE13-32
Articles are hosted by Taylor and Francis Online.
A new and faster Total Monte Carlo (TMC) method for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations is presented (the fast TMC method). It addresses the main drawback of the original TMC method, namely, the necessary large time multiplication factor compared to a single calculation. With this new method, Monte Carlo simulations can now be accompanied with an uncertainty propagation (other than statistical), with small additional calculation time. The fast TMC method is presented and compared with the TMC and fast GRS methods for criticality and shielding benchmarks and burnup calculations. Finally, to demonstrate the efficiency of the method, uncertainties due to uncertainties in 235,238U, 239Pu, and thermal scattering nuclear data, for the local deposited power in 12.7 million cells, are calculated for a full-size reactor core.