ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
D. Rochman, W. Zwermann, S. C. van der Marck, A. J. Koning, H. Sjöstrand, P. Helgesson, B. Krzykacz-Hausmann
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 337-349
Technical Paper | doi.org/10.13182/NSE13-32
Articles are hosted by Taylor and Francis Online.
A new and faster Total Monte Carlo (TMC) method for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations is presented (the fast TMC method). It addresses the main drawback of the original TMC method, namely, the necessary large time multiplication factor compared to a single calculation. With this new method, Monte Carlo simulations can now be accompanied with an uncertainty propagation (other than statistical), with small additional calculation time. The fast TMC method is presented and compared with the TMC and fast GRS methods for criticality and shielding benchmarks and burnup calculations. Finally, to demonstrate the efficiency of the method, uncertainties due to uncertainties in 235,238U, 239Pu, and thermal scattering nuclear data, for the local deposited power in 12.7 million cells, are calculated for a full-size reactor core.