ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Petter Helgesson, Dimitri Rochman, Henrik Sjöstrand, Erwin Alhassan, Arjan Koning
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 321-336
Technical Paper | doi.org/10.13182/NSE13-48
Articles are hosted by Taylor and Francis Online.
Precise assessment of propagated nuclear data uncertainties in integral reactor quantities is necessary for the development of new reactors as well as for modified use, e.g., when replacing UO2 fuel by mixed-oxide (MOX) fuel in conventional thermal reactors. This paper compares UO2 fuel to two types of MOX fuel with respect to propagated nuclear data uncertainty, primarily in keff, by applying the Fast Total Monte Carlo method (Fast TMC) to a typical pressurized water reactor pin cell model in Serpent, including burnup. An extensive amount of nuclear data is taken into account, including transport and activation data for 105 nuclides, fission yields for 13 actinides, and thermal scattering data for H in H2O. There is indeed a significant difference in propagated nuclear data uncertainty in keff; at zero burnup, the uncertainty is 0.6% for UO2 and ∼ 1% for the MOX fuels. The difference decreases with burnup. Uncertainties in fissile fuel nuclides and thermal scattering are the most important for the difference, and the reasons for this are understood and explained. This work thus suggests that there can be an important difference between UO2 and MOX for the determination of uncertainty margins. However, it is difficult to estimate the effects of the simplified model; uncertainties should be propagated in more complicated models of any considered system. Fast TMC, however, allows for this without adding much computational time.