ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Tom Burr, Michael S. Hamada
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 307-320
Technical Paper | doi.org/10.13182/NSE13-86
Articles are hosted by Taylor and Francis Online.
The time series of material balances in nuclear material accounting (NMA) is also known as the material unaccounted for (MUF) sequence. This paper applies a joint cusum test to residual time series from NMA that arise from either of two options. The first residual series is the standardized, independently transformed MUF (SITMUF) sequence that relies on an estimate of Σ, the MUF covariance matrix. The second residual series arises from using either time series modeling or nonparametric smoothing on the MUF sequence and ignores the estimate of Σ. Assuming that the MUF sequence is multivariate Gaussian and ignoring estimation error in Σ, we find the anticipated result that the first option is superior to the second option. In addition, we find that the SITMUF scheme in the first option is robust to modest estimation error in Σ over a large number of idealized facilities, but not necessarily so for any specific idealized facility. These two findings provide a perspective on previous literature that addressed a perceived weakness in NMA.