ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Aaron M. Phillippe, James E. Banfield, Kevin T. Clarno, Larry J. Ott, Bobby Philip, Mark A. Berrill, Rahul S. Sampath, Srikanth Allu, Steven P. Hamilton
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 275-290
Technical Paper | doi.org/10.13182/NSE13-18
Articles are hosted by Taylor and Francis Online.
The Integrated Fuel Assessment IFA-432 experiments from the International Fuel Performance Experiments database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light water reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO2) fuel systems was performed, with a focus on the densification stage (2.2 GWd/tonne UO2). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was overpredicted, and the temperatures were outside the experimental uncertainty. The radial power shape within the fuel was shown to have a significant impact on the predicted centerline temperatures, whereas the effect of modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO2 fuel with respect to a well-validated nuclear fuel performance code.