ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Aaron M. Phillippe, James E. Banfield, Kevin T. Clarno, Larry J. Ott, Bobby Philip, Mark A. Berrill, Rahul S. Sampath, Srikanth Allu, Steven P. Hamilton
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 275-290
Technical Paper | doi.org/10.13182/NSE13-18
Articles are hosted by Taylor and Francis Online.
The Integrated Fuel Assessment IFA-432 experiments from the International Fuel Performance Experiments database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light water reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO2) fuel systems was performed, with a focus on the densification stage (2.2 GWd/tonne UO2). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was overpredicted, and the temperatures were outside the experimental uncertainty. The radial power shape within the fuel was shown to have a significant impact on the predicted centerline temperatures, whereas the effect of modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO2 fuel with respect to a well-validated nuclear fuel performance code.