ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Ville Valtavirta, Tuomas Viitanen, Jaakko Leppänen
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 193-202
Technical Paper | doi.org/10.13182/NSE13-3
Articles are hosted by Taylor and Francis Online.
This paper describes the built-in calculation routines in the reactor physics code Serpent 2 that provide a novel method for solving the coupled problem of the power distribution, temperature distribution, and material property distributions in nuclear fuel elements. All of the coupled distributions are solved during a single simulation with no coupling to external codes. The temperature feedback system consists of three separate built-in parts: an explicit treatment of the thermal motion of target nuclides during the transport calculation, an internal analytic radial temperature profile solver, and internal material property correlations. The internal structure and couplings of the calculation routines are described in detail, after which the results of an assembly-level problem are presented to demonstrate the capabilities and functionality of the system.