ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Gregory G. Davidson, Thomas M. Evans, Joshua J. Jarrell, Steven P. Hamilton, Tara M. Pandya, Rachel N. Slaybaugh
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 111-125
Technical Paper | doi.org/10.13182/NSE12-101
Articles are hosted by Taylor and Francis Online.
We have implemented a new multilevel parallel decomposition in the Denovo discrete ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the multilevel decomposition allows concurrency over energy in addition to space-angle, enabling scalability beyond the limits imposed by the traditional Koch-Baker-Alcouffe (KBA) space-angle partitioning. Furthermore, a new Arnoldi-based k-eigenvalue solver has been implemented. The added phase-space concurrency combined with the high-performance Krylov and Arnoldi solvers has enabled weak scaling to O(105) cores on the Titan XK7 supercomputer. The multilevel decomposition provides a mechanism for scaling to exascale computing and beyond.