ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Dan G. Cacuci, Erkan Arslan
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 339-349
Technical Paper | doi.org/10.13182/NSE13-31
Articles are hosted by Taylor and Francis Online.
This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor [Nucl. Sci. Eng., Vol. 165, p. 18 (2010)] to assimilate experimental data from the international Organisation for Economic Co-operation and Development/U.S. Nuclear Regulatory Commission boiling water reactor full-size fine-mesh bundle test (BFBT) benchmarks to calibrate and reduce systematically and significantly the uncertainties in the predictions of the light water reactor thermal-hydraulic code FLICA4. The BFBT benchmarks were designed by the Nuclear Power Engineering Corporation of Japan for enabling systematic validation of thermal-hydraulic codes by using full-scale experimental data. This work specifically uses BFBT experimental data for the “pump trip for a high-burnup assembly” in the predictive modeling formalism to calibrate parameters and time-dependent boundary conditions (power, mass flow rates, and outlet pressure distributions) in FLICA4, yielding best-estimate predictions of axial void fraction distributions. The resulting uncertainties for the best-estimate time-dependent model parameters and void fraction response distributions are shown to be smaller than the a priori experimental and computed uncertainties, thus demonstrating the successful use of predictive modeling for the large-scale reactor analysis code FLICA4 using BFBT benchmark-grade experiments.