ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dan G. Cacuci, Erkan Arslan
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 339-349
Technical Paper | doi.org/10.13182/NSE13-31
Articles are hosted by Taylor and Francis Online.
This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor [Nucl. Sci. Eng., Vol. 165, p. 18 (2010)] to assimilate experimental data from the international Organisation for Economic Co-operation and Development/U.S. Nuclear Regulatory Commission boiling water reactor full-size fine-mesh bundle test (BFBT) benchmarks to calibrate and reduce systematically and significantly the uncertainties in the predictions of the light water reactor thermal-hydraulic code FLICA4. The BFBT benchmarks were designed by the Nuclear Power Engineering Corporation of Japan for enabling systematic validation of thermal-hydraulic codes by using full-scale experimental data. This work specifically uses BFBT experimental data for the “pump trip for a high-burnup assembly” in the predictive modeling formalism to calibrate parameters and time-dependent boundary conditions (power, mass flow rates, and outlet pressure distributions) in FLICA4, yielding best-estimate predictions of axial void fraction distributions. The resulting uncertainties for the best-estimate time-dependent model parameters and void fraction response distributions are shown to be smaller than the a priori experimental and computed uncertainties, thus demonstrating the successful use of predictive modeling for the large-scale reactor analysis code FLICA4 using BFBT benchmark-grade experiments.