ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dan G. Cacuci, Erkan Arslan
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 339-349
Technical Paper | doi.org/10.13182/NSE13-31
Articles are hosted by Taylor and Francis Online.
This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor [Nucl. Sci. Eng., Vol. 165, p. 18 (2010)] to assimilate experimental data from the international Organisation for Economic Co-operation and Development/U.S. Nuclear Regulatory Commission boiling water reactor full-size fine-mesh bundle test (BFBT) benchmarks to calibrate and reduce systematically and significantly the uncertainties in the predictions of the light water reactor thermal-hydraulic code FLICA4. The BFBT benchmarks were designed by the Nuclear Power Engineering Corporation of Japan for enabling systematic validation of thermal-hydraulic codes by using full-scale experimental data. This work specifically uses BFBT experimental data for the “pump trip for a high-burnup assembly” in the predictive modeling formalism to calibrate parameters and time-dependent boundary conditions (power, mass flow rates, and outlet pressure distributions) in FLICA4, yielding best-estimate predictions of axial void fraction distributions. The resulting uncertainties for the best-estimate time-dependent model parameters and void fraction response distributions are shown to be smaller than the a priori experimental and computed uncertainties, thus demonstrating the successful use of predictive modeling for the large-scale reactor analysis code FLICA4 using BFBT benchmark-grade experiments.