ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Richard T. Evans, John K. Mattingly, Dan G. Cacuci
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 325-338
Technical Paper | doi.org/10.13182/NSE13-24
Articles are hosted by Taylor and Francis Online.
This work presents the application of first-order adjoint sensitivity analysis, uncertainty quantification, and data assimilation to a subcritical plutonium benchmark experiment using a modified version of the discrete ordinates radiation transport code Denovo. Previous Monte Carlo simulations of this benchmark saw a consistent overprediction of the mean and variance of the measured neutron multiplicity distribution. It was observed that a small scalar reduction in the value of the 239Pu-induced fission neutron multiplicity was capable of significantly reducing the discrepancies. This work extends those results by computing first-order sensitivities to each nuclide, reaction type, energy, and material region in the benchmark. The sensitivities are then used in a data assimilation methodology to simultaneously calibrate all responses and multigroup nuclear data. The resulting best-estimate values for the energy group differential multiplicity (νEg) are 1σ to 2σ less than the nominal values found in ENDF/B-VII for energies less than ~1.5 MeV.