ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mayank Goswami, Anupam Saxena, Prabhat Munshi
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 240-253
Technical Paper | doi.org/10.13182/NSE12-26
Articles are hosted by Taylor and Francis Online.
Iterative algorithms for computerized tomography reconstruction employ a variety of grids, interpolation techniques, and solution procedures. A new projection-intersection (PI) grid is presented in this work. It comprises all the intersection points between the projection rays passing through the object. A few advantages include (a) a user-independent discretization process and (b) a reduction in reconstruction error caused by nonparticipating nodes. Computerized tomography reconstruction results by PI are compared with existing conventional grids. The multiplicative algebraic reconstruction technique (MART) and entropy maximization are used as solution techniques. We note that for simulated data, the PI grid gives better results when compared with the square-pixel grid. Two different sets of experimental data (obtained previously for a mercury-nitrogen flow loop and one with a known specimen with a static known profile) are processed with the above-mentioned options. A basic theoretical model (but experimentally correlated) is also used to verify the void reference level. Computerized tomography results for experimental projection data indicate a trend similar to the previous MART results, but a major difference is visible in the void-fraction distributions. This fact is important, as heat transfer coefficients are strongly dependent on the distribution of voids.