ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Tong Kyu Park, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 226-239
Technical Paper | doi.org/10.13182/NSE12-41
Articles are hosted by Taylor and Francis Online.
The multiobjective simulated annealing (MOSA)–based fuel assembly loading pattern (LP) optimization method, employing the discontinuous penalty function (DPF), is extended for multicycle applications by introducing an adaptively constrained discontinuous penalty function (ACDPF). A discontinuous point in the penalty function is adaptively shifted to a better direction during the course of MOSA such that the search can be more efficient. The advantages of the ACDPF-based MOSA algorithm over the original DPF-based algorithm are first examined with a real single-cycle LP optimization problem of an operating reactor, as well as with a simple LP optimization problem that has known solutions. A direct multicycle LP optimization method is then formulated with an application to the first four cycles of the Younggwang Nuclear Unit 4 (YGN4) core. The rearrangement method is devised as a fuel shuffling method that can avoid drastic changes in the LPs of the subsequent cycles of a seed cycle. It is demonstrated that the ACDPF-based MOSA combined with the rearrangement method produces quite effectively the optimum LP sets for the four cycles, which outperform the LPs generated by a series of cyclewise optimizations as well as the actual LPs of YGN4 that were already used in the plant.