ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bryce K. Y. Matsuo, Mark Anderson, Devesh Ranjan
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 138-153
Technical Paper | doi.org/10.13182/NSE12-85
Articles are hosted by Taylor and Francis Online.
Geometrical effects on the local heat transfer coefficient (HTC) and pressure drop for supercritical carbon dioxide in printed-circuit heat exchangers are numerically quantified. Combinations of different operating pressures (7.5 to 10.2 MPa), mass fluxes [326 to 762 kg/(m2⋅s)], and the enhanced wall treatment k-ε and shear stress transport k-ω turbulence models are investigated using a finite-volume framework. Three different channel geometries are used: a nonchamfered zig-zag (ideal case), a chamfered zig-zag (prototype case), and an airfoil (ideal case). The simulations are compared with experimental results and empirical correlations. A new correlation is developed based on the numerical data obtained and published experimental data for the zig-zag channels. The results show that the local HTC increases with an increase in operating pressure or an increase in mass flux for each channel. The HTC of the zig-zag channel is found to be approximately 2.5 times that of the airfoil; however, the pressure drop is 4.0 to 8.3 times higher. Based on these results, the area goodness ratios of the nonchamfered and chamfered zig-zag channels are respectively 2.65 and 1.57 times larger than that of the airfoil.