ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
F. E. LeVert, M. A. Schultz
Nuclear Science and Engineering | Volume 49 | Number 2 | October 1972 | Pages 188-201
Technical Paper | doi.org/10.13182/NSE72-A35506
Articles are hosted by Taylor and Francis Online.
Local measurements of the inherent fluctuations in the gamma-ray density at specific locations in the core of the Pennsylvania State Triga Reactor have been conducted using two externally located detectors. Local power was determined for positions up to the center of the core from a distance of approximately 200 cm by measuring the zero-time cross correlation function in small intervals. Voids introduced by the removal of single fuel elements were readily located and mapped. Single collimator dc scans along diagonal rows in the core were successful in resolving the individual rows of fuel in the core. A comparison between the neutron distribution predicted by two dimensional multi-group diffusion theory and a single collimator measurement showed very good agreement in their respective shapes. Cospectral densities were obtained for the two cases where the collimators focused on and off a volume of fuel in the core. The frequency response data indicated, when interpreted in terms of an analytical model, that the observed output fluctuations were caused by temperature and coolant flow input fluctuations.