ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Paul A. Robinson, Jr., George D. Sauter
Nuclear Science and Engineering | Volume 49 | Number 2 | October 1972 | Pages 117-129
Technical Paper | doi.org/10.13182/NSE72-A35500
Articles are hosted by Taylor and Francis Online.
Inverse Compton scattering, wherein a photon gains energy as a result of a reaction with a moving electron, has been studied as a potential energy loss mechanism in the operation of a controlled thermonuclear reactor (CTR). Assuming local thermodynamic equilibrium within a 500-cm-diam plasma at 20 keV we have calculated, for various plasma densities, the influence of inverse Compton scattering on steady-state photon energy leakage via two potential cooling effects: the increased escape probability of the photons generated within the plasma itself, and the negative net energy deposition within the plasma of an incident external photon flux, such as might be generated by the CTR radiation shield through (n,γ) reactions and photon scattering. For currently anticipated CTR plasma densities (1015 ions/cm3), the increase in steady-state photon leakage due to inverse Compton scattering is negligible. For plasma densities of 1019 ions/cm3 or more, the increase is significant (≥10%).