ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
R. C. Briant, Alvin M. Weinberg
Nuclear Science and Engineering | Volume 2 | Number 6 | November 1957 | Pages 797-803
Technical Paper | doi.org/10.13182/NSE57-A35494
Articles are hosted by Taylor and Francis Online.
Molten fluorides of uranium, thorium, plutonium, and other elements potentially have wide applicability as fuels for power reactors. Because of their low vapor pressure they can be used in very high-temperature but low-pressure liquid-fuel reactors. In addition, they possess great chemical flexibility—the molten-salt principle can be applied to burners, thorium-uranium thermal breeders, plutonium-uranium converters, and possibly even to fast plutonium breeders. Because of the very high thermal efficiency obtainable in reactors using molten salt fuel, the fuel cost in a simple burner using enriched U235 is of the order of 2–3 mills/kwhr. A high-temperature reactor using molten uranium salts (Aircraft Reactor Experiment) was operated for a short time at the Oak Ridge National Laboratory. The reactor was of the circulating-fuel type, with a BeO moderator. The maximum outlet temperature achieved was greater than 1500°F. It is believed that with further development the ARE could be a prototype for an economical uranium burner.