ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
T. K. Bierlein, D. R. Green
Nuclear Science and Engineering | Volume 2 | Number 6 | November 1957 | Pages 778-786
Technical Paper | doi.org/10.13182/NSE57-A35492
Articles are hosted by Taylor and Francis Online.
The maximum penetration of uranium into aluminum in the temperature range 200–390°C has been investigated. The maximum values for the penetration coefficient KT, determined from the relationship KT = x2/t, are 0.075, 0.50, and 6.1 × 10−6 in.2/hr at temperatures of 200, 250, and 390°C, respectively; the corresponding activation energy is 14,300 calories per mole. The utility of cathodically vacuum etching specimens to obtain clean metal surfaces prior to the diffusion anneal is demonstrated. Couples prepared in the temperature range investigated, 200–390°C, fracture by the application of tension between the aluminum and the adjacent UAl3 diffusion zone interface. Subsequent measurement of the maximum UAl3 peak heights above the initial uranium-aluminum interface assures a maximum value of the penetration coefficient. The investigation provides a necessary basis for interpreting the effect of irradiation on the diffusion rates of uranium into aluminum.