ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Karen A. Miller, Martyn T. Swinhoe, Stephen Croft, Takayuki Tamura, Shun Aiuchi, Akio Kawai, Tomonori Iwamoto
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 98-105
Technical Paper | doi.org/10.13182/NSE12-43
Articles are hosted by Taylor and Francis Online.
As new uranium enrichment plants are proposed and come online worldwide, interest in using neutron methods for uranium hexafluoride (UF6) cylinder assay has been growing; however, large discrepancies exist in published F(α,n) yields from uranium isotopes. Uncertainties in these data are propagated through the analysis of every UF6 measurement and have implications for safeguards conclusions drawn from them. In this paper, a value for the specific F(α,n) yield in UF6 from 234U is calculated from measurements of 30B cylinders containing bulk UF6 at the Rokkasho Enrichment Plant in Japan. The measurements were taken using the Uranium Cylinder Assay System. The yield was derived by combining the cylinder measurements with detailed Monte Carlo modeling, known isotopic composition, and inversion analysis. We calculated the 234U neutron emission rate in UF6 to be (474 ± 21) n/s·g−1 with a 68% confidence level. The results obtained in this study will help enable an important class of nondestructive assay instruments to be applied with greater confidence and accuracy.