ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Karl G. A. Porges, Thomas E. Klippert
Nuclear Science and Engineering | Volume 7 | Number 2 | February 1960 | Pages 147-155
Technical Paper | doi.org/10.13182/NSE60-A29084
Articles are hosted by Taylor and Francis Online.
A Boron-lined proportional counter has been developed whose cathode diameter varies continuously, hence varying the gas multiplication along the length of the counter. The sensitive area of the cathode thus becomes a function of the applied voltage, electrical amplification, and pulse-height discrimination. A semi-empirical relationship between counter geometry, gas parameters, and applied voltage is used to develop theoretical expressions for the dependence of count rate on applied voltage and cathode geometry. The behavior of cathodes of hyperbolic and exponential shape is treated. A prototype exponential counter, operated in a pulse counting mode, was constructed and tested. The approximately logarithmic relationship between neutron flux and voltage predicted for such an instrument was confirmed.