ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. M. R. Williams
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 215-230
Technical Paper | doi.org/10.13182/NSE92-A29070
Articles are hosted by Taylor and Francis Online.
The physical and mathematical problems associated with radioactive waste disposal have been outlined and discussed. Some of the more important relationships and equations have been derived and explained with a view to showing how techniques developed in conventional reactor physics problems can be applied with great effect to radionuclide transport. We stress in particular the problems associated with radionuclide transport through spatially random media such as fissured and porous rock. Three distinct modeling procedures are presented: (1) the classical advective dispersion equation and its interpretation as a stochastic differential equation, (2) a purely advective approach in which the groundwater velocity and the retardation factor are random functions, and (3) an analogy with neutron transport by regarding motion along fissures and subsequent branching as a pseudo-scattering process. We describe the mathematical methods needed to solve these stochastic problems and include perturbation theory, Novikov’s theorem and the marked Brownian particle. The relationship between the methods and the non-Fickian behavior that results are discussed and used to explain the scale-dependent experimental results for the dispersion coefficient. In general, the paper attempts to be instructive in that several results are presented which are not new, but also creative in that these results are presented in a new light. Two new models are also discussed and their advantages and shortcomings outlined.