ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Radiant to build first microreactor at Tenn. Manhattan Project site
Radiant Industries will build its first portable nuclear reactor at the site of the Manhattan Project in Oak Ridge, Tenn.
The land for Radiant’s new factory includes portions of the K-27 and K-29 Manhattan Project sites. The company plans to test Kaleidos, a 1-MW nuclear microreactor, in 2026, with first deployments expected soon after.
F. Malvagi, G. C. Pomraning, M. Sammartino
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 199-214
Technical Paper | doi.org/10.13182/NSE92-A29069
Articles are hosted by Taylor and Francis Online.
We consider the problem of neutral particle transport in a stochastic Markovian mixture consisting of an arbitrary number M of immiscible fluids. The Liouville master equation is used to obtain a model for the ensemble-averaged angular flux. This model consists of M coupled transport equations. If the absorption, internal source, and temporal and spatial gradients are assumed small, this transport description can be reduced to a diffusive description. Depending upon the scaling of the Markovian transition lengths, this diffusive limit consists of either a single diffusion equation or a set of M coupled diffusion equations. The asymptotic analysis is also used to derive appropriate initial and boundary conditions for each diffusion equation.