ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
W. L. Filippone, S. Woolf
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 201-208
Technical Paper | doi.org/10.13182/NSE88-A29032
Articles are hosted by Taylor and Francis Online.
An angular redistribution function for electron scattering based on Goudsmit-Saunderson theory has been implemented in a Monte Carlo electron transport code in the form of a scattering matrix that we term SMART (simulating many accumulative Rutherford trajectories). These matrices were originally developed for use with discrete ordinates electron transport codes. An essential characteristic of this scattering theory is a large effective mean-free-path for electrons, much larger in fact than the true single collision mean-free-path. When this theory is applied to single collision analog Monte Carlo calculations, excellent results are obtained for the principal quantities of interest, transmission and reflection spectra, and energy deposition. A derivation of the SMART scattering matrix is presented, using the method of weighted residuals to obtain the discretized form of the Spencer-Lewis equation for electron transport. Results of Monte Carlo calculations for electron transport in aluminum slabs for both beam source and isotropic source configurations are given. These results are compared with similar benchmark calculations made with the TIGER code series.