ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
G.P. Lamaze, F. J. Schima, C. M. Eisenhauer, V. Spiegel
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 43-47
Technical Paper | doi.org/10.13182/NSE88-A29013
Articles are hosted by Taylor and Francis Online.
Because of the similarity in energy dependence of the 103Rh(n,n′) differential cross section to the kerma muscle response function for neutrons, rhodium may be useful as a neutron kerma monitor. In support of its use as a neutron monitor, the spectrum-averaged cross section has been measured for a 252Cf fission neutron spectrum. Pairs of thin rhodium samples were irradiated on opposite sides of a thinly encapsulated 252Cf neutron source. The neutron emission rate of the 252Cf source was determined by the manganous sulfate (MnSO4) bath technique. In this method, the californium source emission rate is determined by comparison to the known emission rate of NBS-I, a standard radium-beryllium neutron source. The neutron fluence incident on the rhodium samples is determined from the californium source strength, average sample-to-source distance, and the duration of the irradiation. Corrections are made for neutron scattering, saturation of activity, and attenuation of the X rays by the sample during counting. The X rays were detected with an intrinsic germanium detector designed specifically for low-energy X-ray detection. The activity was not determined by absolute counting so that the final results depend on the value of PKx, the total K X-ray emission probability. The results of five separate irradiations yield a value of . PKx = 62.3 ± 1.9 mb. Using the most recently published value of PKx gives a value of = 739 ± 22 mb. A discussion of systematic uncertainties is given.