ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
G.P. Lamaze, F. J. Schima, C. M. Eisenhauer, V. Spiegel
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 43-47
Technical Paper | doi.org/10.13182/NSE88-A29013
Articles are hosted by Taylor and Francis Online.
Because of the similarity in energy dependence of the 103Rh(n,n′) differential cross section to the kerma muscle response function for neutrons, rhodium may be useful as a neutron kerma monitor. In support of its use as a neutron monitor, the spectrum-averaged cross section has been measured for a 252Cf fission neutron spectrum. Pairs of thin rhodium samples were irradiated on opposite sides of a thinly encapsulated 252Cf neutron source. The neutron emission rate of the 252Cf source was determined by the manganous sulfate (MnSO4) bath technique. In this method, the californium source emission rate is determined by comparison to the known emission rate of NBS-I, a standard radium-beryllium neutron source. The neutron fluence incident on the rhodium samples is determined from the californium source strength, average sample-to-source distance, and the duration of the irradiation. Corrections are made for neutron scattering, saturation of activity, and attenuation of the X rays by the sample during counting. The X rays were detected with an intrinsic germanium detector designed specifically for low-energy X-ray detection. The activity was not determined by absolute counting so that the final results depend on the value of PKx, the total K X-ray emission probability. The results of five separate irradiations yield a value of . PKx = 62.3 ± 1.9 mb. Using the most recently published value of PKx gives a value of = 739 ± 22 mb. A discussion of systematic uncertainties is given.