ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Yukio Sakamoto, Shun-ichi Tanaka, Yoshiko Harima
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 33-42
Technical Paper | doi.org/10.13182/NSE88-A29012
Articles are hosted by Taylor and Francis Online.
The values of buildup factors for a specific energy above K edges and penetration distance vary smoothly with respect to atomic number. An interpolation of buildup factors for an arbitrary elemental material is examined using geometric-progression (G-P) parameters for an equivalent atomic number. The G-P parameters are data fitted to the proposed American National Standard buildup factor data compilation of 17 elements from beryllium to molybdenum and are calculated by the moments method. The data for iron, molybdenum, tin, lanthanum, gadolinium, tungsten, lead, and uranium, including bremsstrahlung and fluorescence, are calculated by the PALLAS code. Various tests over a wide range of atomic numbers confirm that values of the buildup factors generated by interpolated G-P parameters can reproduce the basic data calculated directly over the full range of energy with an accuracy within a few percent. The values of equivalent atomic number for mixture materials, such as water, air, concrete, and lead glass of 4.36 density, are determined from a ratio of scattering cross section to the total attenuation coefficient. The buildup factors for these materials calculated using the G-P parameters, interpolated by the equivalent atomic number, are in good agreement with the basic data, although a deviation is observed above 3 MeV for the buildup factors for lead glass.