ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Jan B. Dragt
Nuclear Science and Engineering | Volume 50 | Number 3 | March 1973 | Pages 216-219
Technical Paper | doi.org/10.13182/NSE73-A28974
Articles are hosted by Taylor and Francis Online.
One usually assumes that Sjöstrand’s area method for determination of reactivity by the pulsed-neutron technique is only valid in case of exponential prompt-neutron decay and no kinetic distortion. In this paper the method is shown to be valid more generally. Namely, for all systems satisfying multigroup multinode reactor equations, with only one fissioning node, the method holds true exactly when reactivity is understood to be the static reactivity, while βeff is defined as the relative difference between the static prompt and total multiplication factors, provided the sensitivity of the detector has the same energy dependence as the fission cross section of the fuel of the active zone. It follows, e.g., that Sjöstrand’s method with a suitable fission counter is very well suited for measurement of subcriticality in small reflected subcritical fast cores. Some general recommendations are given.