ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
J. B. Yasinsky and S. Kaplan
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 426-437
Technical Paper | doi.org/10.13182/NSE67-A28957
Articles are hosted by Taylor and Francis Online.
The method of flux synthesis is extended in a systematic way to allow the possibility of using different sets of trial functions in different axial zones. The necessary equations are derived in some detail and numerical examples are presented. The results of these examples are very satisfactory and suggest, therefore, that the synthesis procedure can be made much more useful and powerful by extending it in this way. In a more general context they suggest that the basic notation of deriving discontinuous-type approximation methods from an appropriate variational principle is a valid and very effective idea.